Comments on: New Frontiers in Unmanned Flight — Your Questions Answered https://www.gpsworld.com/new-frontiers-in-unmanned-flight-your-questions-answered/ The Business and Technology of Global Navigation and Positioning Tue, 21 Jul 2015 21:17:55 +0000 hourly 1 https://wordpress.org/?v=6.4.3 By: John Foggia https://www.gpsworld.com/new-frontiers-in-unmanned-flight-your-questions-answered/#comment-390444 Tue, 21 Jul 2015 21:17:55 +0000 https://www.gpsworld.com/?p=38964#comment-390444 Regarding Question 3 … with respect to NASA’s fixed wing aircraft participating in the “Let’s Fly Wisely” medical delivery flight research event – the aircraft was NASA Langley Research Center’s SR-22 Surrogate UAS research aircraft. A safety pilot onboard is required to taxi, takeoff and land the aircraft, but the SR-22 can be controlled remotely, from a ground control station, via an RF datalink. Choices for the datalink include VHF (used during the Let’s Fly Wisely” event); SATCOM via a commercial SATCOM provider; an internet connection to a remotely located radio datalink; or from the backseat of the SR-22, where a ground control station is located in the event all ground up-links are unavailable. The SR-22 Surrogate UAS system can accept inputs of heading, altitude, climb and descent rates, and speeds. The onboard pilot provides see and avoid capability, and can intervene at any time safety dictates. During the Let’s Fly Wisely event in western Virginia, the aircraft was controlled remotely after reaching 500 feet AGL – controlled from the ground station enroute to the “point of origin” airport 35 NM miles distant, where the safety pilot resumed control above 500 feet, landed the aircraft, was met by pharmaceutical personnel with about 10 lbs of prescription medicined, and returned to Lonesome Pine Airport under remote control of the ground station located at the Lonesome Pine Airport. The aircraft was maneuvered remotely into position to land and control transferred to the onboard safety pilot. Touchdown was timed for just after the Governor of Virginia arrived at the airport. After taxi-in and shutdown, the medical supplies were transferred to waiting pharmaceutical personnel, and moved across the airfield to the waiting Flirtey multirotor UAS. After parsing into smaller packages, the medicine was lifted from the airport to the Wise County Fairgrounds, then accurately lowered via tether to a prescribed landing zone. The multi rotor remained aloft while lowering the medical package, remaining within visual contact of the operator at all times. The tether was rewound into the multi rotor, and the vehicle returned to the airport to pick up another load. This safe, well constructed test was overseen by NASA partner Virginia Tech and the Mid-Atlantic Aviation Partnership/Virginia Test site.
The research flights simulated a use case where a large UAS is operated remotely from a point of origin to the edge of remote access – into an unmonitored or unimproved airstrip as close as possible to those in need of medical or other critical supplies. A small UAS is then dispatched to make multiple trips to various points of delivery in dangerous, contaminated, or inaccessible areas in an expedient, repeatable, and assured operation.
As the Principal Investigator for the NASA portion of this multi-role research flight, I’ll be considering factors impacting the safety case for using the surrogate UAS as a research platform for sense-and-avoid research articles and beyond-line-of-sight operations, such as command latency margins, link health and link margins necessary for various levels of remote service, antenna placement and signal diversity for high integrity remote control operations, use of surrogate UAS for in-NAS establishment of equivalent-level-of-safety requirements, etc. Increased autonomy and machine decision-making are also areas to consider as we use highly visible opportunities like “Let’s Fly Wisely” to advance general public and UAS stakeholder awareness, trust in autonomy, and acceptance of UAS as a routine participant in the National Airspace System.

Regards,

John Foggia
Project Manager, CERTAIN UAS Test Environment
NASA Langley Research Center
Hampton, VA

]]>